## Lecture 06: Martingale Inequalities and Talagrand Inequality

This lecture note closely follows the presentation of Chapter 3 and 4 of "Concentration," by Colin McDiarmid (link)

The lecture assumes basic familiarity with probability spaces, $\sigma$-fields and martingales. See, for example, Section 3.3 of "Concentration," by Colin McDiarmid (link)

## A Useful Lemma

All results are with respect to an implicit filtration
$\mathcal{F}_{0} \subseteq \mathcal{F}_{1} \subseteq \cdots \subseteq \mathcal{F}_{n}$.

## Lemma

Let $Y_{1}, \ldots, Y_{n}$ be a martingale difference sequence with $-a_{k} \leqslant Y_{k} \leqslant 1-a_{k}$ for each $k$. Let $a=\sum a_{k} / n$ and $\bar{a}=1-a$.
Then for any $0 \leqslant t \leqslant \bar{a}$,

$$
\operatorname{Pr}\left(\sum Y_{k} \geqslant n t\right) \leqslant\left(\left(\frac{a}{a+t}\right)^{a+t}\left(\frac{\bar{a}}{\bar{a}-t}\right)^{\bar{a}-t}\right)^{n}
$$

Let $S_{n}=S_{n-1}+Y_{n}$. Use the previous lecture to complete the proof from the following result:

$$
\begin{aligned}
\mathbb{E}\left[\exp \left(h S_{n}\right)\right] & =\mathbb{E}\left[\exp \left(h S_{n-1}\right) \cdot \mathbb{E}\left[\exp \left(h Y_{n} \mid \mathcal{F}_{n-1}\right)\right]\right] \\
& \leqslant \mathbb{E}\left[\exp \left(h S_{n-1}\right)\left(\left(1-a_{n}\right) \exp \left(-h a_{n}\right)+a_{n} \exp \left(h\left(1-a_{n}\right)\right)\right)\right. \\
& \leqslant \exp \left(-\sum h a_{k}\right) \cdot \prod\left(1-a_{k}+a_{k} \exp (h)\right)
\end{aligned}
$$

## Hoeffding-Azuma inequality

## Theorem (Hoeffding-Azuma inequality)

Let $Y_{1}, \ldots, Y_{n}$ be a martingale difference sequence with $\left|Y_{k}\right| \leqslant c_{k}$ for each $k$. For any $t \geqslant 0$, we have:

$$
\operatorname{Pr}\left[\sum Y_{k} \geqslant n t\right] \leqslant 2 \exp \left(-n^{2} t^{2} / 2 \sum c_{k}^{2}\right)
$$

Think: How to prove this?

## Generalizations

## Theorem

Let $Y_{1}, \ldots, Y_{n}$ be a martingale difference sequence with
$-a_{k} \leqslant Y_{k} \leqslant 1-a_{k}$ for each $k$. Let $a=\sum a_{k} / n$.
(1) For any $t \geqslant 0$

$$
\operatorname{Pr}\left[\left|\sum Y_{k}\right| \geqslant t\right] \leqslant 2 \exp \left(-2 t^{2} / n\right)
$$

(2) For any $\varepsilon>0$

$$
\operatorname{Pr}\left[\sum Y_{k} \geqslant \varepsilon a n\right] \leqslant \exp \left(-\varepsilon^{2} a n / 2(1+\varepsilon / 3)\right)
$$

(3) For any $\varepsilon>0$

$$
\operatorname{Pr}\left[\sum Y_{k} \leqslant-\varepsilon a n\right] \leqslant \exp \left(-\varepsilon^{2} a n / 2\right)
$$

Use the useful lemma to prove this

## Talagrand's Convex Distance

- Recall definition of $d_{\alpha}(\cdot, \cdot)$ from the previous lecture
- $d_{T}(\mathbf{x}, A)=\sup \left\{d_{\alpha}(\mathbf{x}, A): \alpha \geqslant 0,\|\alpha\|_{2}=1\right\}$


## Theorem (Talagrand Inequality)

Let $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ be a family of independent random variables and let $A$ be a subset of the product space. Then for any $t \geqslant 0$,

$$
\operatorname{Pr}[\mathbf{X} \in A] \cdot \operatorname{Pr}\left[d_{T}(\mathbf{X}, A) \geqslant t\right] \leqslant \exp \left(-t^{2} / 4\right)
$$

Read the proof from the literature.

## Application of Talagrand Inequality

Let $X_{k}$ be a uniform random number. Let $f(\mathrm{x})$ represent the length of the longest increasing subsequence of ( $x_{1}, \ldots, x_{n}$ ).

- For every x there exists a subset $K(\mathrm{x}) \subseteq[n]$ such that $f(\mathrm{x})=K(\mathrm{x})$
- Consider any y
- Note that:

$$
f(\mathbf{y}) \geqslant\left|\left\{i \in K(\mathbf{x}): y_{i}=x_{i}\right\}\right|=f(\mathbf{x})-\left|\left\{i \in K(\mathbf{x}): y_{i} \neq x_{i}\right\}\right|
$$

- Let $\alpha$ be a $1 / \sqrt{f(x)}$ at all indices in $K(x)$ and 0 elsewhere
- We have $f(\mathrm{y}) \geqslant f(\mathrm{x})-\sqrt{f(\mathrm{x})} d_{\alpha}(\mathrm{x}, \mathrm{y})$


## Definition (c-Configuration Function)

A c-configuration function $f$ satisfies: For any x and y , there exists $\alpha$ such that

$$
f(\mathbf{y}) \geqslant f(\mathbf{x})-\sqrt{c f(\mathrm{x})} d_{\alpha}(\mathrm{x}, \mathrm{y})
$$

## Concentration of c-Configuration Functions

## Theorem

Let $f$ be a c-configuration function and let $m$ be the median for $f(\mathbf{X})$. Then for any $t \geqslant 0$,

$$
\operatorname{Pr}[f(\mathbf{X}) \geqslant m+t] \leqslant 2 \exp \left(-t^{2} / 4 c(m+t)\right)
$$

We will prove this using Talagrand inequality

- By definition $f(\mathbf{x}) \leqslant f(\mathbf{y})+\sqrt{c f(\mathbf{x})} d_{\alpha}(\mathbf{x}, \mathrm{y})$
- Let $A_{a}=\{\mathbf{y}: f(\mathbf{y}) \leqslant a\}$
- So, $f(\mathbf{x}) \leqslant a+\sqrt{c f(\mathbf{x})} d_{\alpha}(\mathbf{x}, \mathbf{y})$ for any $\mathbf{y} \in A_{a}$
- So, $f(\mathbf{x}) \leqslant a+\sqrt{c f(\mathbf{x})} d_{\alpha}\left(\mathbf{x}, A_{a}\right) \leqslant a+\sqrt{c f(\mathbf{x})} d_{T}\left(\mathbf{x}, A_{a}\right)$
- If $f(\mathbf{x}) \geqslant a+t$ then $d_{T}\left(\mathbf{x}, A_{a}\right) \geqslant \frac{f(\mathbf{x})-a}{\sqrt{x f(\mathbf{x})}} \geqslant \frac{t}{\sqrt{c(a+t)}}$
- Therefore, $\operatorname{Pr}[f(\mathbf{X}) \geqslant a+t] \leqslant \operatorname{Pr}\left[d_{T}\left(\mathbf{X}, A_{a}\right) \geqslant \frac{t}{\sqrt{c(a+t)}}\right]$
- By Talagrand Inequality:

$$
\begin{aligned}
& \operatorname{Pr}[f(\mathbf{X}) \leqslant a) \cdot \operatorname{Pr}[f(\mathbf{X}) \geqslant a+t] \\
& \leqslant \operatorname{Pr}\left[\mathbf{X} \in A_{a}\right] \cdot \operatorname{Pr}\left[d_{T}\left(\mathbf{X}, A_{a}\right) \geqslant \frac{t}{\sqrt{c(a+t)}}\right] \\
& \leqslant \exp \left(-t^{2} / 4 c(a+t)\right)
\end{aligned}
$$

- Use $a=m$ and the fact that $\operatorname{Pr}[\mathbf{X} \leqslant m] \geqslant 1 / 2$

