Lecture 06: Martingale Inequalities and Talagrand Inequality

Lecture 06: Martingale Inequalities and Talagrand Inequalities

・ 同 ト ・ ヨ ト ・ ヨ ト

This lecture note closely follows the presentation of Chapter 3 and 4 of "Concentration," by Colin McDiarmid (link)

The lecture assumes basic familiarity with probability spaces, σ -fields and martingales. See, for example, Section 3.3 of "Concentration," by Colin McDiarmid (link)

A Useful Lemma

All results are with respect to an implicit filtration $\mathcal{F}_0 \subseteq \mathcal{F}_1 \subseteq \cdots \subseteq \mathcal{F}_n$.

Lemma

Let Y_1, \ldots, Y_n be a martingale difference sequence with $-a_k \leq Y_k \leq 1 - a_k$ for each k. Let $a = \sum a_k/n$ and $\bar{a} = 1 - a$. Then for any $0 \leq t \leq \bar{a}$,

$$\Pr(\sum Y_k \ge nt) \le \left(\left(\frac{a}{a+t} \right)^{a+t} \left(\frac{\bar{a}}{\bar{a}-t} \right)^{\bar{a}-t} \right)^n$$

Let $S_n = S_{n-1} + Y_n$. Use the previous lecture to complete the proof from the following result:

$$\mathbb{E}[\exp(hS_n)] = \mathbb{E}[\exp(hS_{n-1}) \cdot \mathbb{E}[\exp(hY_n|\mathcal{F}_{n-1})]]$$

$$\leq \mathbb{E}[\exp(hS_{n-1})\left((1-a_n)\exp(-ha_n) + a_n\exp(h(1-a_n))\right)$$

$$\leq \exp(-\sum ha_k) \cdot \prod \left(1-a_k + a_k\exp(h)\right)$$

Lecture 06: Martingale Inequalities and Talagrand Inequalities

Theorem (Hoeffding–Azuma inequality)

Let Y_1, \ldots, Y_n be a martingale difference sequence with $|Y_k| \leq c_k$ for each k. For any $t \geq 0$, we have:

$$\Pr[\sum Y_k \ge nt] \le 2\exp(-n^2t^2/2\sum c_k^2)$$

Think: How to prove this?

Generalizations

Theorem

Let
$$Y_1, \ldots, Y_n$$
 be a martingale difference sequence with
 $-a_k \leq Y_k \leq 1 - a_k$ for each k . Let $a = \sum a_k/n$.
• For any $t \ge 0$
 $\Pr[\left|\sum Y_k\right| \ge t] \le 2\exp(-2t^2/n)$
• For any $\varepsilon > 0$
 $\Pr[\sum Y_k \ge \varepsilon an] \le \exp(-\varepsilon^2 an/2(1 + \varepsilon/3))$
• For any $\varepsilon > 0$
 $\Pr[\sum Y_k \le -\varepsilon an] \le \exp(-\varepsilon^2 an/2)$

Use the useful lemma to prove this

 • Recall definition of $d_{lpha}(\cdot,\cdot)$ from the previous lecture

•
$$d_T(\mathbf{x}, A) = \sup\{d_\alpha(\mathbf{x}, A) \colon \alpha \ge 0, \|\alpha\|_2 = 1\}$$

Theorem (Talagrand Inequality)

Let $\mathbf{X} = (X_1, \dots, X_n)$ be a family of independent random variables and let A be a subset of the product space. Then for any $t \ge 0$,

$$\Pr[\mathbf{X} \in A] \cdot \Pr[d_{\mathcal{T}}(\mathbf{X}, A) \ge t] \le \exp(-t^2/4)$$

Read the proof from the literature.

Application of Talagrand Inequality

Let X_k be a uniform random number. Let $f(\mathbf{x})$ represent the length of the longest increasing subsequence of (x_1, \ldots, x_n) .

- For every x there exists a subset $K(x) \subseteq [n]$ such that f(x) = K(x)
- Consider any **y**
- Note that:

 $f(\mathbf{y}) \geq |\{i \in \mathcal{K}(\mathbf{x}) \colon y_i = x_i\}| = f(\mathbf{x}) - |\{i \in \mathcal{K}(\mathbf{x}) \colon y_i \neq x_i\}|$

- Let α be a $1/\sqrt{f(\mathbf{x})}$ at all indices in $K(\mathbf{x})$ and 0 elsewhere
- We have $f(\mathbf{y}) \geqslant f(\mathbf{x}) \sqrt{f(\mathbf{x})} d_{\alpha}(\mathbf{x}, \mathbf{y})$

Definition (*c*-Configuration Function)

A *c*-configuration function *f* satisfies: For any **x** and **y**, there exists α such that

$$f(\mathbf{y}) \ge f(\mathbf{x}) - \sqrt{cf(\mathbf{x})}d_{\alpha}(\mathbf{x},\mathbf{y})$$

Theorem

Let f be a c-configuration function and let m be the median for $f(\mathbf{X})$. Then for any $t \ge 0$,

$$\Pr[f(\mathbf{X}) \ge m+t] \le 2\exp(-t^2/4c(m+t))$$

We will prove this using Talagrand inequality

Proof

• By definition
$$f(\mathbf{x}) \leq f(\mathbf{y}) + \sqrt{cf(\mathbf{x})}d_{\alpha}(\mathbf{x}, \mathbf{y})$$

• Let $A_a = \{\mathbf{y}: f(\mathbf{y}) \leq a\}$
• So, $f(\mathbf{x}) \leq a + \sqrt{cf(\mathbf{x})}d_{\alpha}(\mathbf{x}, \mathbf{y})$ for any $\mathbf{y} \in A_a$
• So, $f(\mathbf{x}) \leq a + \sqrt{cf(\mathbf{x})}d_{\alpha}(\mathbf{x}, A_a) \leq a + \sqrt{cf(\mathbf{x})}d_T(\mathbf{x}, A_a)$
• If $f(\mathbf{x}) \geq a + t$ then $d_T(\mathbf{x}, A_a) \geq \frac{f(\mathbf{x}) - a}{\sqrt{xf(\mathbf{x})}} \geq \frac{t}{\sqrt{c(a+t)}}$
• Therefore, $\Pr[f(\mathbf{X}) \geq a + t] \leq \Pr\left[d_T(\mathbf{X}, A_a) \geq \frac{t}{\sqrt{c(a+t)}}\right]$

• By Talagrand Inequality:

$$\Pr[f(\mathbf{X}) \leq a) \cdot \Pr[f(\mathbf{X}) \geq a+t]$$

$$\leq \Pr[\mathbf{X} \in A_a] \cdot \Pr\left[d_T(\mathbf{X}, A_a) \geq \frac{t}{\sqrt{c(a+t)}}\right]$$

$$\leq \exp(-t^2/4c(a+t))$$

• Use a = m and the fact that $\Pr[\mathbf{X} \leq m] \ge 1/2$

∢ ≣ ⊁

э